

a . W @

(17 GD)

MODEL 6005.1

SUB PANEL MOUNT Circuit Board P/N 24-210

Input: 120 VAC, 50/60 HZ. Output: 0-120 VAC Single Unit Fuse Size: 15 AMPS 80% Duty Cycle at Rated AMPS

Note: Mount Open Frame controls within an enclosure.

Automation Devices, Inc.

7050 West Ridge Road Fairview, PA 16415-2099 Phone: 814-474-5561 FAX: 814-474-2131 Web Site: <u>WWW.AUTODEV.COM</u> E-mail: <u>SALES@AUTODEV.COM</u>

ADJUSTMENTS AND SET UP

1. SELECTING OUTPUT PULSE MODE

Choose an output mode of 120 or 60 by sliding the OUTPUT PULSE DIPswitch (S1) to the appropriate position.

Other names for "120 Pulses Per Second" are AC or 7200 VPM (Vibrations Per Minute). "60" is the same as DC or 3600 VPM or Rectified.

Note: Readjust MAX pot after changing pulse mode setting.

2. LIMITING THE MAXIMUM OUTPUT OF CONTROL

Adjust the **MAX** Output trimpot so that the output to the feeder reaches its desired maximum level when the **MAIN CONTROL DIAL** is turned fully clockwise. The **MAX** Output trimpot should be adjusted to keep the vibratory feeder from hammering when the control is turned up to full power.

NOTE: Output to feeder must be connected and the control set for proper output frequency (60 or 120 pulse) setting. The Run Jumper must be connected as shown on the wiring diagram.

- A. Power input should be **OFF** or disconnected.
- B. Rotate MAIN CONTROL DIAL on front cover to 0 or its minimum setting.
- C. Open cover to allow access to printed circuit card.
- D. Using **CAUTION**, turn power **ON** (no output should be present).
- E. Rotate the **MAIN CONTROL DIAL** on front cover slowly to its highest setting.
- F. Adjust the MAX output trimpot so that the output to the feeder reaches its desired maximum level when the MAIN CONTROL DIAL is turned fully clockwise. Turning the MAX output trimpot clockwise increases the maximum output level.

3. REMOTE OFF/ON CONTROL

A Run Jumper has been installed at the factory as shown on the enclosed wiring diagram.

Note: TB2 terminals 5-7 are referenced to the line voltage circuit. Therefore any switch or contact connected to them must be isolated from other circuits.

Remote OFF/ON operation of the control can be configured to operate in one of the following ways.

- A. A low current switch such as a paddle switch can replace the factory-installed Run Jumper "J1." The "Run Contact" connects across terminals 6 and 7. The contact must be able to switch 5VDC and 2mA. The control will then run only when the contact is closed. Refer to Section A of the OFF/ON CONTROL GUIDE.
- B. <u>Feeder Bowl/Hopper Interlock</u> allows the Hopper control to operate only when the Bowl is running and the paddle switch contact is closed. The **interlock input** on terminals 11 and 12 of TB2 is controlled by the **interlock output** of a "Parts Sensing Feeder Bowl Control" such as a 6800 Series control.

Remove jumper "J1" of this control from terminals 6 and 7. Connect the Hopper Paddle switch to alternate terminals 5 and 6. Connect TB2 terminals 11 and 12 of this control to the "Parts Sensing Control". Refer to Section B of the OFF/ON CONTROL GUIDE. Check specific instructions for the "Parts Sensing Control" wiring.

Note: Two 6040 Series controls will not interlock to each other since neither one has an **interlock output**.

C. Low Voltage DC can be used to turn the control **ON** and **OFF**. Move jumper "J1" from terminal 7, to terminal 5, (6 remains the same). Then connect the positive signal (+10 to 30VDC @ 10mA) to terminal 12 and the negative to terminal 11 of TB2. The control will now turn **ON** when the DC signal is present at terminals 11 and 12 of TB2. This input is optically isolated. Refer to Sect. C of the OFF/ON CONTROL GUIDE. TB-2 terminals 5-7 are transformer isolated from the line voltage circuit.

4. <u>SETTING THE MINIMUM</u> OUTPUT LEVEL OF CONTROL

When the vibratory feeder is nearly empty, turn the **MAIN CONTROL DIAL** to "1" and adjust the **MIN** trimpot to just below the slowest speed that provides the proper feed rate. The MIN trimpot also serves as the "low speed" trimpot for 2-speed operation. See "S1 Programming Chart" for feature selection details.

MAIN CONTROL DIAL

5.

The output power is controlled by the **MAIN CONTROL DIAL**. It is a logarithmic-tapered power out curve (non-linear) that spreads the power broadly across the **MAIN CONTROL DIAL** The logarithmic taper power curve helps to give maximum "Fine Control" over the output speed of the vibratory feeder. When very precise adjustment of the **MAIN CONTROL DIAL** is needed, increase the MIN trimpot setting and/or decrease the MAX trimpot setting. For precise scaling at low amplitudes, use the linear POT taper or reduce the Max pot setting. To select a linear pot taper for the Main Control Dial, see the "S1 Programming Chart."

6. SETTING THE SOFT-START

The start-up rate of the control output can be adjusted to ramp up to the desired output level instead of starting abruptly. Soft-start keeps parts from falling off the tooling, reduces spring shock, and hammering when the control turns ON. Turn the **SOFT** Start trimpot clockwise for the gentlest start (about a 6 sec. ramp up to full output). Turn the trimpot fully counter-clockwise for no soft start.

7. LINE VOLTAGE COMPENSATION

Fluctuations in the line voltage can cause a feeder bowl to vary its feed rate. The line voltage compensation feature adjusts the control's output to help compensate for fluctuations in the supply voltage. If it becomes necessary to disable this feature, set "Disable LVC" from the S1 programming chart

8. REMOTE SPEED CONTROL

Remote control of the power level can be accomplished by the following methods:

A. 4-20mA signal from a PLC can be used to remotely vary the output of the control instead of the Main Control Dial. The 4-20mA input is automatically in control whenever a 4-20mA signal is applied to the control (terminals TB2-8 & 9). The Main Control dial setting is ignored whenever there is a 4-20mA signal. The 4-20mA input is transformer isolated from the power line. In an environment with high electrical noise, use a shielded cable for the 4-20mA signal. The "S1 Programming Chart" shows how change to 0-20mA speed control instead of the default of 4-20mA.

B. A 0-5VDC Analog input signal may be applied in place of the Main Control Dial at H1. The 0-5VDC input is transformer isolated from the power line.

9. SUPPLEMENTARY FEATURES

Special supplementary software features can be enabled on the 24-210/24-211 circuit boards The features include: *linear pot taper*, 0-20mA control, *empty bowl timer*, *low pulse rates*, and *two speed pots*. See the S1 Switch Programming Chart. Contact the manufacturer for more information.

STATUS LEDs

10.

When any of the inputs are active, the associated LED will turn ON. When the RUN input conditions are met, the RUN LED will turn ON. See section 3 and the wiring diagram's ON/OFF Control Guide for more information on how to satisfy the RUN conditions.

WARNING:

Fuses should be replaced with a Bussman ABC or Littelfuse 3AB "Fast Acting" type or equivalent of manufacturer's original value.

Mounting this control directly to a vibrating device will void the warranty.

TROUBLESHOOTING

Basic Procedure – To ascertain whether the problem lies in the controller, take the following steps:

- A. Check for good fuses. Disconnect the input power and tighten the screw terminals.
- B. For the control output to be on: Make sure that the proper input power is present. The MAIN CONTROL DIAL must be turned up or if the 4-20mA input is used, it must have over 5mA. Either the DIRECT LED must be lit or both the INTERLOCK and EXT VOLTS LEDs must be lit. Anytime the output is turned on, the RUN LED will be ON. To light the DIRECT LED, a Run Jumper must be connected at

TB2-6 & TB2-7. To light the INTERLOCK LED, a Run Jumper must connect TB2-5 to TB2-6. To illuminate the EXT VOLTS LED, a 10-30 VDC signal has to be present at TB2-11 & 12. See the section titled "**Remote OFF/ON control**" for more information.

- C. Connect an AC voltmeter across the LOAD terminals (with the LOAD connected) and vary the **MAIN CONTROL DIAL** from minimum to maximum. In 120 pulse mode, the output should vary from approximately 30% to 98% of the input voltage depending on the setting of the **MIN** and **MAX** trimpots. In 60 pulse mode the output should vary from 20% to around 85% of the input voltage.
- D. On new installations: If the Feeder only hums but it doesn't feed any parts, try changing the 60/120 DIP switch (S1) to the opposite position.

When neither a humming sound nor any vibration can be detected in the vibratory feeder, the problem may be in the controller.

S1 Programming Chart			
Program Description	S1 Switch Positions		
	SW3	SW4	SW5
Standard Program	0	0	0
Linear Pot Taper	1	0	0
0-20mA option	0	1	0
Empty Bowl Timer	1	1	0
Disable LVC	0	0	1
2-Speed Operation	1	0	1
30/40 Pulse Operation	0	1	1
Low Voltage at "1"	1	1	1

Automation Devices, Inc.

Automation Devices, Inc.

7050 West Ridge Road Fairview, PA 16415-2099 Phone: 814-474-5561 FAX: 814-474-2131 or 800-235-9382 Web Site: <u>WWW.AUTODEV.COM</u> E-mail: <u>SALES@AUTODEV.COM</u>

MODEL 6005.1 OPEN FRAME MODEL INSTRUCTIONS

TB2 RUN AUX FEATURE TERM. STRIP (SMALL) JUMPER OPTIONAL J1 MAIN CONTROL TB2 12 11 10 ¥ ¥ ß 8 ¥ POT + Exte 4-20mA cw Interlock O RUN red black Direct H1_+ Sig. • SIG white . S1 E E 60 kev $| \oslash$ Max Pot Input 60 SHIELD \oslash SW3 SW4 SW5 Min 100K OHM 1/8W MIN Ø Soft TRANSFO RMER CHASSIS For evironments with P/N 24-210 solenoids and motor drives: Strip the shield AC COMMON LOAD AC HOT G drain wire to 1" long. 3 8 q 10 11 12 4 TB1 Connect the shield TB1 LINE VOLTAGE TERM. STRIP (TALL) Φ Q B drain wire to the side \leq BI #14 ٨N #14 of the card bracket. # . #14 #20 #14 4 ٨ FUSE #14 A2 TRIAC • GATE A1 Customer supplied wiring OPTIONAL is shown by dashed lines POWER SW. HOT HOT COM GND COM GND INPUT POWER OUTPUT PO WER CHASSIS **INPUT VAC** AMPS OUTPUT MODEL 6005.1 120VAC 15A 0-120

OFF/ON CONTROL GUIDE P/N 24-210/24-211

See section 3 of the Application Note for more details.

B) FEEDER BOWL/HOPPER INTERLOCK 6800 SERIES

C) LOW VOLTAGE INPUT SWITCHING (DC Voltage from PLC) 10-30 VDC INPUT VOLTAGE OFF/ON CONTROL + - J1 12 11 10 9 8 7 6 5 6000 SERIES TERM STRIP TB-2